HoTT-light

A lightweight version of the Homotopy Type Theory library prelude.

Set Warnings "-notation-overridden".

Require Export Unicode.Utf8.
Require Import Coq.Program.Tactics Setoid.
Require Import Relations.
Switches to constants in Type
Require Import Equations.Type.All.

This imports the polymorphic identity and sigma types in Type and their associated notations.
Import Id_Notations.
Import Sigma_Notations.
Local Open Scope equations_scope.
Set Warnings "-deprecated-option".
Set Universe Polymorphism.
Set Primitive Projections.
We want our definitions to stay transparent.
Set Equations Transparent.
Set Implicit Arguments.

Redefine a polymorphic identity function
Definition id {A : Type} (a : A) : A := a.

Require Import CRelationClasses CMorphisms.

#[local] Instance id_reflexive A : Reflexive (@Id A).
Proof. exact (@id_refl A). Defined.

#[local] Instance eq_symmetric A : Symmetric (@Id A).
Proof. exact (@id_sym A). Defined.

#[local] Instance eq_transitive A : Transitive (@Id A).
Proof. exact (@id_trans A). Defined.

Non-dependent cartesian products are just sigma types.

Equations fst {A B} (p : A × B) : A :=
fst (a, b) := a.

Equations snd {A B} (p : A × B) : B :=
snd (a, b) := b.

Definition Sect {A B : Type} (s : A B) (r : B A) :=
   x : A, r (s x) = x.

Equations ap {A B : Type} (f : A B) {x y : A} (p : x = y) : f x = f y :=
ap f id_refl := id_refl.

We define transport with the arguments in the order we like.

Equations transport {A : Type} (P : A Type) {x y : A} (p : x = y) (u : P x) : P y :=
transport P id_refl u := u.

Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing).

We use 1 to refer to the reflexivity proof.
Notation "1" := id_refl : equations_scope.

Notation for the inverse
Reserved Notation "p ^" (at level 3, format "p '^'").
Notation "p ^" := (id_sym p%equations) : equations_scope.

Equations apd {A} {B : A Type} (f : x : A, B x) {x y : A} (p : x = y) :
  p # f x = f y :=
apd f 1 := 1.

Equivalence

A typeclass that includes the data making f into an adjoint equivalence

Class IsEquiv {A B : Type} (f : A B) := BuildIsEquiv {
  equiv_inv : B A ;
  eisretr : Sect equiv_inv f;
  eissect : Sect f equiv_inv;
  eisadj : x : A, eisretr (f x) = ap f (eissect x)
}.
Arguments eisretr {A B}%type_scope f%function_scope {_} _.
Arguments eissect {A B}%type_scope f%function_scope {_} _.
Arguments eisadj {A B}%type_scope f%function_scope {_} _.
Arguments IsEquiv {A B}%type_scope f%function_scope.

A record that includes all the data of an adjoint equivalence.
Record Equiv A B := BuildEquiv {
  equiv_fun : A B ;
  equiv_isequiv : IsEquiv equiv_fun
}.

Coercion equiv_fun : Equiv >-> Funclass.

Global Existing Instance equiv_isequiv.

Arguments equiv_fun {A B} _ _.
Arguments equiv_isequiv {A B} _.

Bind Scope equiv_scope with Equiv.

Reserved Infix "<~>" (at level 85).
Notation "A <~> B" := (Equiv A B) (at level 85) : type_scope.

Notation "f ^^-1" := (@equiv_inv _ _ f _) (at level 3).

Functional extensionality


Definition pointwise_paths {A} {P:AType} (f g: x:A, P x)
  := x:A, f x = g x.

#[export] Hint Unfold pointwise_paths : typeclass_instances.

Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.

This definition has slightly changed: the match on the Id is external to the function.
Equations apD10 {A} {B : A Type} {f g : x, B x} (h : f = g) : f == g :=
apD10 1 := fun h ⇒ 1.

Class Funext :=
  { isequiv_apD10 :> (A : Type) (P : A Type) f g, IsEquiv (@apD10 A P f g) }.

Axiom funext : Funext.
#[local] Existing Instance funext.

Definition path_forall `{Funext} {A : Type} {P : A Type} (f g : x : A, P x) :
  f == g f = g
  :=
  (@apD10 A P f g)^^-1.

Path spaces in sigma types and product types


Equations path_sigma {A : Type} (P : A Type) (u v : sigma P)
  (p : u.1 = v.1) (q : p # u.2 = v.2) : u = v :=
path_sigma (_, _) (_, _) 1 1 := 1.

Equations path_prod_uncurried {A B : Type} (z z' : A × B)
           (pq : (z.1 = z'.1) × (z.2 = z'.2)): z = z' :=
path_prod_uncurried (_, _) (_, _) (1, 1) := 1.

Definition path_prod {A B : Type} (z z' : A × B) (e : z.1 = z'.1) (f : z.2 = z'.2) : z = z' :=
  path_prod_uncurried _ _ (e, f).

Equations path_prod_eq {A B : Type} (z z' : A × B) (e : z.1 = z'.1) (f : z.2 = z'.2) : z = z' :=
path_prod_eq (_, _) (_, _) 1 1 := 1.

Equations eta_path_prod {A B : Type} {z z' : A × B} (p : z = z') :
  path_prod _ _ (ap pr1 p) (ap (fun x : A × Bpr2 x) p) = p :=
eta_path_prod 1 := 1.

Definition path_prod' {A B : Type} {x x' : A} {y y' : B}
  : (x = x') (y = y') ((x,y) = (x',y'))
  := fun p qpath_prod (x, y) (x', y') p q.

Equations ap_fst_path_prod {A B : Type} {z z' : A × B}
  (p : z.1 = z'.1) (q : z.2 = z'.2) :
  ap fst (path_prod _ _ p q) = p :=
ap_fst_path_prod (z:=(_, _)) (z':=(_, _)) 1 1 := 1.

Equations ap_snd_path_prod {A B : Type} {z z' : A × B}
  (p : z.1 = z'.1) (q : z.2 = z'.2) :
  ap snd (path_prod _ _ p q) = q :=
ap_snd_path_prod (z:=(_, _)) (z':=(_, _)) 1 1 := 1.

#[local] Instance isequiv_path_prod {A B : Type} {z z' : A × B}
: IsEquiv (path_prod_uncurried z z').
Proof.
  unshelve refine (BuildIsEquiv _ _ _).
  - exact (fun r(ap fst r, ap snd r)).
  - intro. apply eta_path_prod.
  - intros [p q]. exact (path_prod'
                          (ap_fst_path_prod p q)
                          (ap_snd_path_prod p q)).
  - destruct z as [x y], z' as [x' y'].
    intros [p q]; simpl in p, q.
    destruct p, q; apply 1.
Defined.
Equations path_sigma_uncurried {A : Type} {P : A Type} (u v : sigma P)
  (pq : Σ p, p # u.2 = v.2)
  : u = v :=
path_sigma_uncurried (u1, u2) (_, _) (1, 1) := 1.

Definition pr1_path {A} {P : A Type} {u v : sigma P} (p : u = v)
: u.1 = v.1
  := ap (@pr1 _ _) p.

Notation "p ..1" := (pr1_path p) (at level 3).

Definition pr2_path {A} `{P : A Type} {u v : sigma P} (p : u = v)
: p..1 # u.2 = v.2.
  destruct p. apply 1.
Defined.

Notation "p ..2" := (pr2_path p) (at level 3).

Definition eta_path_sigma_uncurried {A} `{P : A Type} {u v : sigma P}
           (p : u = v) : path_sigma_uncurried _ _ (p..1, p..2) = p.
  destruct p. apply 1.
Defined.

Definition eta_path_sigma A `{P : A Type} {u v : sigma P} (p : u = v)
: path_sigma _ _ (p..1) (p..2) = p
  := eta_path_sigma_uncurried p.

Definition path_sigma_equiv {A : Type} (P : A Type) (u v : sigma P):
  IsEquiv (path_sigma_uncurried u v).
  unshelve refine (BuildIsEquiv _ _ _).
  - exact (fun r(r..1, r..2)).
  - intro. apply eta_path_sigma_uncurried.
  - destruct u, v; intros [p q]; simpl in ×.
    destruct p. simpl in ×. destruct q.
    reflexivity.
  - destruct u, v; intros [p q]; simpl in *;
    destruct p. simpl in ×. destruct q; simpl in ×.
    apply 1.
Defined.

Groupoid laws for equality


Equations concat {A} {x y z : A} (e : x = y) (e' : y = z) : x = z :=
concat 1 q := q.

Notation "p @ q" := (concat p q) (at level 20).

Definition concat2 {A} {x y z : A} {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q')
  : p @ q = p' @ q'
:= match h, h' with 1, 1 ⇒ 1 end.

Reserved Notation "p @@ q" (at level 20).
Notation "p @@ q" := (concat2 p q)%equations : equations_scope.

Definition moveR_E A B (f:A B) {H : IsEquiv f} (x : A) (y : B) (p : x = f^^-1 y)
  : (f x = y)
  := ap f p @ (@eisretr _ _ f _ y).

One can use the shortcut notation | p to give patterns for the explicit arguments without repeating the function name.

Equations concat_1p {A : Type} {x y : A} (p : x = y) :
  1 @ p = p :=
| 1 := 1.

Equations concat_p1 {A : Type} {x y : A}
 (p : x = y) : p @ 1 = p :=
| 1 := 1.

Equations concat_Vp {A : Type} {x y : A} (p : x = y) : p^ @ p = 1 := | 1 := 1.

Equations concat_pV {A : Type} {x y : A} (p : x = y) : p @ p^ = 1 := | 1 := 1.

Equations concat_p_pp {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) :
  p @ (q @ r) = (p @ q) @ r :=
concat_p_pp 1 _ _ := 1.

#[export] Hint Rewrite @concat_p1 @concat_Vp @concat_pV : concat.

#[local] Instance Id_equiv A : Equivalence (@Id A) := {}.

#[local] Instance concat_morphism (A : Type) x y z :
  Proper (Id ==> Id ==> Id) (@concat A x y z).
Proof. reduce. destruct X. destruct X0. destruct x0. reflexivity. Defined.

Definition trans_co_eq_inv_arrow_morphism@{i j k} :
   (A : Type@{i}) (R : crelation@{i j} A),
    Transitive R Proper@{k j} (respectful@{i j k j k j} R
    (respectful@{i j k j k j} Id (@flip@{k k k} _ _ Type@{j} arrow))) R.
Proof. reduce. transitivity y. assumption. now destruct X1. Defined.
#[local] Existing Instance trans_co_eq_inv_arrow_morphism.

Equations concat_pp_A1 {A : Type} {g : A A} (p : x, x = g x)
  {x y : A} (q : x = y)
  {w : A} (r : w = x)
  :
    (r @ p x) @ ap g q = (r @ q) @ p y :=
concat_pp_A1 _ 1 1 := concat_p1 _.

Equations whiskerL {A : Type} {x y z : A} (p : x = y)
           {q r : y = z} (h : q = r) : p @ q = p @ r :=
whiskerL _ 1 := 1.

Equations whiskerR {A : Type} {x y z : A} {p q : x = y}
           (h : p = q) (r : y = z) : p @ r = q @ r :=
whiskerR 1 _ := 1.

Equations moveL_M1 {A : Type} {x y : A} (p q : x = y) :
  id_sym q @ p = 1 p = q :=
moveL_M1 _ 1 := fun ee.

Definition inverse2 {A : Type} {x y : A} {p q : x = y} (h : p = q)
: id_sym p = id_sym q := ap (@id_sym _ _ _) h.

Equations ap02 {A B : Type} (f:AB) {x y:A} {p q:x=y} (r:p=q) : ap f p = ap f q :=
ap02 f 1 := 1.

Equations ap_p_pp {A B : Type} (f : A B) {w : B} {x y z : A}
  (r : w = f x) (p : x = y) (q : y = z) :
  r @ (ap f (p @ q)) = (r @ ap f p) @ (ap f q) :=
ap_p_pp f _ 1 _ := concat_p_pp _ 1 _.

Equations ap_compose {A B C : Type} (f : A B) (g : B C) {x y : A} (p : x = y) :
  ap (fun xg (f x)) p = ap g (ap f p) :=
ap_compose f g 1 := 1.

An example of the with construct doing abstraction in the context and conclusion. Here p x is abstracted first, then g x, resulting in a goal gx : A, px : gx = x.
Equations concat_A1p {A : Type} {g : A A} (p : x, g x = x) {x y : A} (q : x = y) :
  (ap g q) @ (p y) = (p x) @ q :=
concat_A1p p 1 with p x, g x :=
  { concat_A1p p (x:=?(x)) 1 1 x := 1 }.

Dummy example using functional elimination on a proof-relevant function using with.

Lemma concat_A1p_lemma {A} (f : A A) (p : x, f x = x) {x y : A} (q : x = y) :
  (concat_A1p p q) = (concat_A1p p q).
Proof.
  apply_funelim (concat_A1p p q). clear; intros. simpl.
  elim Heq0 using Logic.Id_rect_r. simpl. reflexivity.
Qed.

Equations ap_pp {A B : Type} (f : A B) {x y z : A} (p : x = y) (q : y = z) :
  ap f (p @ q) = (ap f p) @ (ap f q) :=
ap_pp _ 1 1 ⇒ 1.

Equations concat_pp_V {A : Type} {x y z : A} (p : x = y) (q : y = z) :
  (p @ q) @ id_sym q = p :=
concat_pp_V 1 1 ⇒ 1.

Equations ap_V {A B : Type} (f : A B) {x y : A} (p : x = y) :
  ap f (id_sym p) = id_sym (ap f p) :=
ap_V f 1 ⇒ 1.

#[export] Hint Rewrite @ap_pp @ap_V : ap.
#[export] Hint Rewrite @concat_pp_V : concat.

Equations concat_pA1 {A : Type} {f : A A} (p : x, x = f x) {x y : A} (q : x = y) :
  (p x) @ (ap f q) = q @ (p y) :=
concat_pA1 p 1 := concat_p1 (p _).

Equations concat_p_Vp {A : Type} {x y z : A} (p : x = y) (q : x = z) :
  p @ (id_sym p @ q) = q :=
concat_p_Vp 1 1 := 1.

Equations concat_pV_p {A : Type} {x y z : A} (p : x = z) (q : y = z) :
  (p @ id_sym q) @ q = p :=
concat_pV_p 1 1 := 1.
#[export] Hint Rewrite @concat_pA1 @concat_p_Vp @concat_pV_p : concat.
Definition concat_pA1_p {A : Type} {f : A A} (p : x, f x = x)
  {x y : A} (q : x = y)
  {w : A} (r : w = f x)
  : (r @ ap f q) @ p y = (r @ p x) @ q.
Proof.
  destruct q; simpl.
  now rewrite !concat_p1.
  (* now simp concat. *)
Defined.

Equations ap_p {A B : Type} (f : A B) {x y : A} (p q: x = y) (e : p = q) :
  ap f p = ap f q :=
ap_p f 1 := 1.

#[local] Instance ap_morphism (A : Type) (B : Type) x y f :
  Proper (@Id (@Id A x y) ==> @Id (@Id B (f x) (f y))) (@ap A B f x y).
Proof. reduce. now apply ap_p. Defined.

#[local] Instance reflexive_proper_proxy :
   (A : Type) (R : crelation A), Reflexive R x : A, ProperProxy R x.
Proof. intros. reduce. apply X. Defined.

#[local] Instance isequiv_inverse A B (f:A B) (H:IsEquiv f) : IsEquiv (f^^-1) | 1000.
Proof.
  refine (BuildIsEquiv (@eissect _ _ f _) (@eisretr _ _ f _) _).
  intros b.
  rewrite <- (concat_1p (eissect _ _)).
  rewrite <- (concat_Vp (ap f^^-1 (eisretr _ (f (f^^-1 b))))).
  rewrite (whiskerR (inverse2 (ap02 f^^-1 (eisadj _ (f^^-1 b)))) _).
  refine (whiskerL _ (id_sym (concat_1p (eissect _ _))) @ _).
  rewrite <- (concat_Vp (eissect _ (f^^-1 (f (f^^-1 b))))).
  rewrite <- (whiskerL _ (concat_1p (eissect _ (f^^-1 (f (f^^-1 b)))))).
  rewrite <- (concat_pV (ap f^^-1 (eisretr _ (f (f^^-1 b))))).
  apply moveL_M1.
  repeat rewrite concat_p_pp.
    (* Now we apply lots of naturality and cancel things. *)
  rewrite <- (concat_pp_A1 (fun aid_sym (eissect _ a)) _ _).
  rewrite (ap_compose f f^^-1).
  rewrite <- (ap_p_pp _ _ (ap f (ap f^^-1 (eisretr _ (f (f^^-1 b))))) _).
  rewrite <- (ap_compose f^^-1 f).
  rewrite (concat_A1p (@eisretr _ _ f _) _).
  rewrite ap_pp, concat_p_pp.
  rewrite (concat_pp_V _ (ap f^^-1 (eisretr _ (f (f^^-1 b))))).
  repeat rewrite <- ap_V. rewrite <- ap_pp.
  rewrite <- (concat_pA1 (fun yid_sym (eissect _ y)) _).
  rewrite ap_compose, <- (ap_compose f^^-1 f).
  rewrite <- ap_p_pp.
  rewrite (concat_A1p (@eisretr _ _ f _) _).
  rewrite concat_p_Vp.
  rewrite <- ap_compose.
  rewrite (concat_pA1_p (@eissect _ _ f _) _).
  rewrite concat_pV_p; apply concat_Vp.
Defined.

Definition transport_inv A {P : A Type} (x y :A) (e : x = y) (u:P x) v:
  u = e^ # v e # u = v.
  destruct e. exact id.
Defined.

Definition moveR_M1 {A : Type} {x y : A} (p q : x = y) :
  1 = p^ @ q p = q.
Proof.
  destruct p.
  intro h. exact (h @ (concat_1p _)).
Defined.

Definition moveL_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) :
  r @ q = p q = r^ @ p.
Proof.
  destruct r.
  intro h. exact ((concat_1p _)^ @ h @ (concat_1p _)^).
Defined.

Contractibility


Class Contr (A : Type) := BuildContr {
  center : A ;
  contr : ( y : A, center = y)
}.
Arguments center A {Contr}.

Lemma contr_equiv A B (f : A B) `{IsEquiv A B f} `{Contr A}
  : Contr B.
Proof.
   (f (center A)).
  intro y.
  eapply moveR_E.
  apply contr.
Qed.

Global Instance contr_forall A {P : A Type} {H : a, Contr (P a)}
  : Contr ( a, P a) | 100.
Proof.
   (fun a ⇒ @center _ (H a)).
  intro f. apply path_forall. intro a. apply contr.
Defined.

Global Instance contr_unit : Contr unit | 0 := {|
  center := tt;
  contr := fun t : unitmatch t with tt ⇒ 1 end |}.

Definition path_contr {A} {H:Contr A} (x y : A) : x = y
  := concat (id_sym (@contr _ H x)) (@contr _ H y).

Definition path2_contr {A} {H:Contr A} {x y : A} (p q : x = y) : p = q.
  assert (K : (r : x = y), r = path_contr x y).
  intro r; destruct r; symmetry; now apply concat_Vp.
  apply (transitivity (y:=path_contr x y)).
  - apply K.
  - symmetry; apply K.
Defined.

#[local] Instance contr_paths_contr A {H:Contr A} (x y : A) : Contr (x = y) | 10000 := let c := {|
  center := concat (id_sym (contr x)) (contr y);
  contr := path2_contr (concat (id_sym (contr x)) (contr y))
|} in c.

Global Program Instance contr_prod A B {CA : Contr A} {CB : Contr B} : Contr (prod A B).
Next Obligation. exact (@center _ CA, @center _ CB). Defined.
Next Obligation. apply path_prod; apply contr. Defined.

Equations singletons_contr {A : Type} (x : A) : Contr (Σ y : A, x = y) :=
  singletons_contr x := {| center := (x, 1); contr := contr |}
    where contr : y : (Σ y : A, x = y), (x, 1) = y :=
          contr (x, 1) := 1.
#[local] Existing Instance singletons_contr.

Notation " 'rew' H 'in' c " := (@Logic.Id_rew_r _ _ _ c _ H) (at level 20).
Notation " 'rewd' H 'in' c " := (@Logic.Id_rect_r _ _ _ c _ H) (at level 20).

Singletons are contractible as a no-confusion principle

The (heterogeneous) NoConfusion principle for equality, i.e. NoConfusiom (Σ y, x = y) is equivalent to the proof that singletons are contractible, i.e that this type has a definitional equivalence with unit.

Definition NoConfusion_singleton {A : Type} (x : A) (p q : Σ y : A, x = y) : Type :=
  unit.

Unset Implicit Arguments.

Equations noConfusion_singleton {A} (x : A) (p q : Σ y : A, x = y) : NoConfusion_singleton p q p = q :=
 noConfusion_singleton x (x, 1) (x, 1) tt ⇒ 1.

Equations noConfusion_singleton_inv {A} (x : A) (p q : Σ y : A, x = y) : p = q NoConfusion_singleton p q :=
 noConfusion_singleton_inv x (x, 1) ?((x, 1)) 1tt.

Definition NoConfusionIdPackage_singleton {A} (x : A) : NoConfusionPackage (Σ y : A, x = y).
Proof.
  refine {| NoConfusion := @NoConfusion_singleton _ x;
            noConfusion := noConfusion_singleton x;
            noConfusion_inv := noConfusion_singleton_inv x |}.
  - intros a b e. (* also, this is an equality in the unit type... *)
    dependent elimination a as [(a, 1)].
    dependent elimination b as [(a, 1)].
    hnf in e. destruct e. reflexivity.
  - intros a b e. (*  apply path2_contr. *)
    dependent elimination e as [1].
    dependent elimination a as [(a, 1)].
    reflexivity.
Defined.

Definition contr_sigma A {P : A Type}
  {H : Contr A} `{H0 : a, Contr (P a)}
  : Contr (sigma P).
Proof.
   (center A, center (P (center A))).
  intros [a Ha]. unshelve refine (path_sigma _ _ _ _).
  simpl. apply H. simpl. apply transport_inv.
  apply (H0 (center A)).
Defined.

Adjointification: producing an equivalence from an iso


Section Adjointify.

  Context {A B : Type} (f : A B) (g : B A).
  Context (isretr : Sect g f) (issect : Sect f g).

  (* This is the modified eissect. *)
  Let issect' := fun x
    ap g (ap f (issect x)^) @ ap g (isretr (f x)) @ issect x.

  Let is_adjoint' (a : A) : isretr (f a) = ap f (issect' a).
  Proof.
    unfold issect'.
    apply moveR_M1.
    repeat rewrite ap_pp, concat_p_pp; rewrite <- ap_compose.
    rewrite (concat_pA1 (fun b(isretr b)^) (ap f (issect a)^)).
    repeat rewrite concat_pp_p; rewrite ap_V.
    rewrite <- concat_p_pp.
    rewrite <- concat_p_pp.
    apply moveL_Vp. rewrite concat_p1.
    rewrite concat_p_pp, <- ap_compose.
    rewrite (concat_pA1 (fun b(isretr b)^) (isretr (f a))).
    rewrite concat_pV, concat_1p; reflexivity.
  Qed.

We don't make this a typeclass instance, because we want to control when we are applying it.
  Definition isequiv_adjointify : IsEquiv f
    := @BuildIsEquiv A B f g isretr issect' is_adjoint'.

  Definition equiv_adjointify : A <~> B
    := @BuildEquiv A B f isequiv_adjointify.

End Adjointify.

Arguments isequiv_adjointify {A B}%type_scope (f g)%function_scope isretr issect.
Arguments equiv_adjointify {A B}%type_scope (f g)%function_scope isretr issect.

Congruence preserves equivalence

If f is an equivalence, then so is ap f. We are lazy and use adjointify.
Global Instance isequiv_ap {A B} f `{IsEquiv A B f} (x y : A)
  : IsEquiv (@ap A B f x y) | 1000
  := isequiv_adjointify (ap f)
  (fun q(eissect f x)^ @ ap f^^-1 q @ eissect f y)
  (fun q
    ap_pp f _ _
    @ whiskerR (ap_pp f _ _) _
    @ ((ap_V f _ @ inverse2 (eisadj f _)^)
      @@ (ap_compose f^^-1 f _)^
      @@ (eisadj f _)^)
    @ concat_pA1_p (eisretr f) _ _
    @ whiskerR (concat_Vp _) _
    @ concat_1p _)
  (fun p
    whiskerR (whiskerL _ (ap_compose f f^^-1 _)^) _
    @ concat_pA1_p (eissect f) _ _
    @ whiskerR (concat_Vp _) _
    @ concat_1p _).

The definition of homotopy fiber.
Definition hfiber {A B : Type} (f : A B) (y : B) := Σ (x : A), f x = y.

Global Arguments hfiber {A B}%type_scope f%function_scope y.

This page has been generated by coqdoc