Polynomials
We start with a simple definition deciding if some integer is equal
to 0 or not. Integers are encoded using an inductive type Z
with three constructors Z0, Zpos and Zneg, the latter two
taking positive numbers as arguments. There is a single
representant of 0 which we discriminate here. The second clause
actually captures both the Zpos and Zneg constructors.
The specification of this test is that it returns true iff the variable is indeed
different from 0 w.r.t. the standard Leibniz equality. We elide a simple proof
by case analysis. Note that we use an implicit coercion from bool to Prop here,
as is usual when doing boolean reflection.
Lemma IsNZ_spec z : IsNZ z ↔ (z ≠ 0)%Z.
Proof.
funelim (IsNZ z); unfold not; split; intros;
(discriminate || contradiction || constructor).
Qed.
Multivariate polynomials
Inductive poly : bool → nat → Type :=
| poly_z : poly true O
| poly_c (z : Z) : IsNZ z → poly false O
| poly_l {n b} (Q : poly b n) : poly b (S n)
| poly_s {n b} (P : poly b n) (Q : poly false (S n)) :
poly false (S n).
- poly_z represents the null polynomial.
- poly_c c represents the constant polynomial c where c is non-zero (i.e. has a proof of IsNZ c).
- poly_l n Q represents the injection of Q, a polynomial on n variables, as a polynomial on n+1 variables.
- Finally, poly_s P Q : poly _ (S n) represents where P cannot mention the variable but Q can mention the variables up to and including , and the multiplication is not trivial as Q is non-null.
In addition to the usual eliminators of the inductive type
generated by Coq, we automatically derive a few constructions on
this poly datatype, and the mono datatype that follows,
that will be used by the Equations command:
Monomials represent parts of polynoms, and one can compute the
coefficient constant by which each monomial is multiplied in a given
polynom. Again the index of a mono gives the number of its free variables.
- Its Signature: as described earlier , this is the packing of a polynomial with its two indices, a boolean and a natural number in this case.
- Its NoConfusion property used to simplify equalities between constructors of the poly type (equation ).
- Finally, its Subterm relation, to be used when performing well-founded recursion on poly.
Monomials
Inductive mono : nat → Type :=
| mono_z : mono O
| mono_l : ∀ {n}, mono n → mono (S n)
| mono_s : ∀ {n}, mono (S n) → mono (S n).
Derive Signature NoConfusion NoConfusionHom Subterm for mono.
Our first interesting definition computes the coefficient in Z by which
a monomial m is multiplied in a polynomial p.
Equations get_coef {n} (m : mono n) {b} (p : poly b n) : Z by wf (pack m) mono_subterm :=
get_coef mono_z poly_z := 0%Z;
get_coef mono_z (poly_c z _) := z;
get_coef (mono_l m) (poly_l p) := get_coef m p;
get_coef (mono_l m) (poly_s p _) := get_coef m p;
get_coef (mono_s m) (poly_l _) := 0%Z;
get_coef (mono_s m) (poly_s p1 p2) := get_coef m p2.
The definition can be done using either the usual structural
recursion of Coq or well-founded recursion. If we use structural
recursion, the guardness check might not be able to verify the
automatically generated proof that the function respects its graph, as
it involves too much rewriting due to dependent pattern-matching. We
could prove it using a dependent induction instead of using the raw
fixpoint combinator as the recursion is on direct subterms of the
monomial, but in general it could be arbitrarily complicated, so we
present a version allowing deep pattern-matching and recursion. Note
that this means we lose the definitional behavior of get_coef during
proofs on open terms, but this can advantageously be replaced using
explicit rewrite calls, providing much more control over
simplification than the reduction tactics, especially in presence of
recursive functions. The get_coef function still uses no axioms,
so it can be used to compute as part of a reflexive tactic for example.
We want to do recursion on the (dependent) m : mono n argument,
using the derived mono_subterm relation, which expects an element in
the signature of mono, { n : nat & mono n }, so we use pack m to
lift m into its signature type (pack is just an abbreviation for
the signature_pack overloaded constant defined in ).
The rest of the definition is standard: to fetch a monomial
coefficient, we simultaneously pattern-match on the monomial and
polynomial. Note that many cases are impossible due to the invariants
enforced in poly and mono. For example mono_z can only match
polynomials built from poly_z or poly_c, etc.
The monomial decomposition is actually a complete characterization
of a polynomial: two polynomials with the same coefficients for every
monomial are the same.
To show this, we need a lemma that shows that every non-null polynomial,
has a monomial with non-null coefficient:
this proof is done by dependent induction on the polynomial p.
Note that the index of p rules out the poly_z case.
Two detailed proofs
Lemma poly_nz {n} (p : poly false n) : ∃ m, IsNZ (get_coef m p).
Proof with (autorewrite with get_coef; auto).
intros. depind p.
∃ mono_z...
destruct IHp. ∃ (mono_l x)...
destruct IHp2. ∃ (mono_s x)...
Qed.
Notation " ( x ; p ) " := (existT _ x p).
Theorem get_coef_eq {n} b1 b2
(p1 : poly b1 n) (p2 : poly b2 n) :
(∀ (m : mono n), get_coef m p1 = get_coef m p2) →
(b1 ; p1) = (b2 ; p2) :> { null : _ & poly null n}.
Proof with (simp get_coef in *; auto).
Throughout the proof, we use the simp tactic defined by
which is a wrapper around autorewrite using the hint
database associated to the constant get_coef: the database
contains the defining equations of get_coef as rewrite rules
that can be used to simplify calls to get_coef in the goal.
intros Hcoef.
induction p1 as [ | z Hz | n b p1 | n b p1 IHp q1 IHq ]
in b2, p2, Hcoef |- *;
[dependent elimination p2 as [poly_z | poly_c z i] |
dependent elimination p2 as [poly_z | poly_c z' i'] |
dependent elimination p2 as
[@poly_l n b' p2 | @poly_s n b' p2 q2] ..].
all:(intros; try rename n0 into n; auto;
try (specialize (Hcoef mono_z); simp get_coef in Hcoef; subst z;
(elim i || elim Hz ||
ltac:(repeat f_equal; auto)); fail)).
- specialize (IHp1 _ p2). forward IHp1. intro m.
specialize (Hcoef (mono_l m))... clear Hcoef.
We first do an induction on p1 and then eliminate (dependently)
p2, the first two branches need to consider variable-closed p2s
while the next two branches have p2 : poly _ (S n), hence the poly_l
and poly_s patterns. The elided rest of the tactic solves simple subgoals.
We now focus on the case for poly_l on both sides.
After some simplifications of the induction hypothesis using
the Hcoef hypothesis, we get to the following goal:
(b, b' : bool) (n : nat) (p1 : poly b n) (p2 : poly b' n)
IHp1 : (b; p1) = (b'; p2)
============================
(b; poly_l p1) = (b'; poly_l p2)
The IHp1 hypothesis, as a general equality between dependent
pairs can again be eliminated dependently to substitute b' by
b and p2 by p1 simultaneously, using
dependent elimination IHp1 as [eq_refl], leaving us with
a trivial subgoal.
(b, b' : bool) (n : nat) (p1 : poly b n) (p2 : poly b' n)
IHp1 : (b; p1) = (b'; p2)
============================
(b; poly_l p1) = (b'; poly_l p2)
The next step is to give an evaluation semantics to polynomials.
We program eval p v where v is a valuation in Z for all the
variables in p : poly _ n.
Equations eval {n} {b} (p : poly b n) (v : Vector.t Z n) : Z :=
eval poly_z nil := 0%Z;
eval (poly_c z _) nil := z;
eval (poly_l p) (cons _ xs) := eval p xs;
eval (poly_s p1 p2) (cons y ys) :=
(eval p1 ys + y × eval p2 (cons y ys))%Z.
It is quite clear that two equal polynomials should have the
same value for any valuation. To show this, we first need to prove
that evaluating a null polynomial always computes to 0, whichever
valuation is used.
This is a typical case where the proof directly follows the definition
of eval. Instead of redoing the same case splits and induction that
the function performs, we can directly appeal to its elimination
principle using the funelim tactic.
Lemma poly_z_eval {n} (p : poly true n) v : eval p v = 0%Z.
Proof.
funelim (eval p v); [ reflexivity | assumption ].
Qed.
This leaves us with two goals as the true index in p implies
that the poly_c and poly_s clauses do not need to be considered.
We have to show 0 = 0 for the case p = poly_z and eval q v = 0
for the poly_l recursive constructor, in which case the conclusion
directly follows from the induction hypothesis correspondinng to the
recursive call. The second subgoal is hence discharged with an
assumption call.
Addition is defined on two polynomials with the same number of variables and returns
a (possibly null) polynomial with the same number of variables.
We define an injection function to constructs objects in the dependent pair type
{b : bool & poly b n}.
The definition shows the with feature of Equations, allowing to
add a nested pattern-matching while defining the function, here in
one case to inject an integer into a polynomial and in the
poly_s, poly_s case to inspect a recursive call.
Notation " x .1 " := (projT1 x) (at level 3, format "x .1").
Notation " x .2 " := (projT2 x) (at level 3, format "x .2").
Equations plus {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n) : { b : bool & poly b n } :=
plus poly_z poly_z := apoly poly_z;
plus poly_z (poly_c y ny) := apoly (poly_c y ny);
plus (poly_c x nx) poly_z := apoly (poly_c x nx);
plus (poly_c x nx) (poly_c y ny) with (x + y)%Z ⇒ {
| Z0 ⇒ apoly poly_z ;
| Zpos z' ⇒ apoly (poly_c (Zpos z') I) ;
| Zneg z' ⇒ apoly (poly_c (Zneg z') I) };
plus (poly_l p1) (poly_l p2) := apoly (poly_l (plus p1 p2).2);
plus (poly_l p1) (poly_s p2 q2) := apoly (poly_s (plus p1 p2).2 q2);
plus (poly_s p1 q1) (poly_l p2) := apoly (poly_s (plus p1 p2).2 q1);
plus (poly_s p1 q1) (poly_s p2 q2) with plus q1 q2 ⇒ {
| (false ; q3) ⇒ apoly (poly_s (plus p1 p2).2 q3);
| (true ; _) ⇒ apoly (poly_l (plus p1 p2).2) }.
The functional elimination principle can be derived all the same
for plus, allowing us to make quick work of the proof that it
is a morphism for evaluation:
Lemma plus_eval : ∀ {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n) v,
(eval p1 v + eval p2 v)%Z = eval (plus p1 p2).2 v.
Proof with (simp plus eval; auto with zarith).
Ltac X := (simp plus eval; auto with zarith).
intros until p2.
let f := constr:(fun_elim (f:=@plus)) in apply f; intros; depelim v; X; try rewrite <- H; X.
- rewrite Heq in Hind.
specialize (Hind (Vector.cons h v)).
rewrite poly_z_eval in Hind. nia.
- rewrite Heq in Hind. rewrite <- Hind. nia.
Qed.
#[local] Hint Rewrite <- @plus_eval : eval.
Equations poly_neg {n} {b} (p : poly b n) : poly b n :=
poly_neg poly_z := poly_z;
poly_neg (poly_c (Z.pos a) p) := poly_c (Z.neg a) p;
poly_neg (poly_c (Z.neg a) p) := poly_c (Z.pos a) p;
poly_neg (poly_l p) := poly_l (poly_neg p);
poly_neg (poly_s p q) := poly_s (poly_neg p) (poly_neg q).
Lemma neg_eval : ∀ {n} {b1} (p1 : poly b1 n) v,
(- eval p1 v)%Z = eval (poly_neg p1) v.
Proof.
Ltac XX := (autorewrite with poly_neg plus eval; auto with zarith).
depind p1; depelim v; XX. destruct z; depelim i; XX.
rewrite <- IHp1_1; rewrite <- IHp1_2; nia.
Qed.
#[local] Hint Rewrite <- @neg_eval : eval.
Equality can be decided using the difference of polynoms
Lemma poly_diff_z_eq : ∀ {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n),
(plus p1 (poly_neg p2)).1 = true →
(_ ; p1) = (_; p2) :> { null : bool & poly null n }.
Proof.
intros.
depind p1; depelim p2; auto;
try (autorewrite with poly_neg plus in H; discriminate; fail).
- destruct z; destruct i; autorewrite with poly_neg plus in *; discriminate.
- f_equal; destruct z as [ | z | z], z0 as [ | z0 | z0 ]; depelim i; depelim i0; autorewrite with poly_neg plus in H.
assert (z = z0).
remember (Z.pos z + Z.neg z0)%Z as z1; destruct z1; try discriminate; simpl in H; nia.
subst; auto.
remember (Z.pos z + Z.pos z0)%Z as z1; destruct z1; try discriminate.
remember (Z.neg z + Z.neg z0)%Z as z1; destruct z1; try discriminate.
assert (z = z0).
remember (Z.neg z + Z.pos z0)%Z as z1; destruct z1; try discriminate; simpl in H; nia.
subst; auto.
- autorewrite with poly_neg plus in H.
specialize (IHp1 _ p2 H).
depelim IHp1. auto.
- autorewrite with poly_neg plus in H.
specialize (IHp1_1 _ p2_1); specialize (IHp1_2 _ p2_2).
remember (plus p1_2 (poly_neg p2_2)) as P; remember (plus p1_1 (poly_neg p2_1)) as Q.
destruct P as [bP P]; destruct Q as [bQ Q].
destruct bP; destruct bQ; simpl in H; try rewrite <- HeqQ in H; try discriminate.
specialize (IHp1_1 eq_refl); specialize (IHp1_2 eq_refl).
depelim IHp1_1; try depelim IHp1_2; auto.
Qed.
(plus p1 (poly_neg p2)).1 = true →
(_ ; p1) = (_; p2) :> { null : bool & poly null n }.
Proof.
intros.
depind p1; depelim p2; auto;
try (autorewrite with poly_neg plus in H; discriminate; fail).
- destruct z; destruct i; autorewrite with poly_neg plus in *; discriminate.
- f_equal; destruct z as [ | z | z], z0 as [ | z0 | z0 ]; depelim i; depelim i0; autorewrite with poly_neg plus in H.
assert (z = z0).
remember (Z.pos z + Z.neg z0)%Z as z1; destruct z1; try discriminate; simpl in H; nia.
subst; auto.
remember (Z.pos z + Z.pos z0)%Z as z1; destruct z1; try discriminate.
remember (Z.neg z + Z.neg z0)%Z as z1; destruct z1; try discriminate.
assert (z = z0).
remember (Z.neg z + Z.pos z0)%Z as z1; destruct z1; try discriminate; simpl in H; nia.
subst; auto.
- autorewrite with poly_neg plus in H.
specialize (IHp1 _ p2 H).
depelim IHp1. auto.
- autorewrite with poly_neg plus in H.
specialize (IHp1_1 _ p2_1); specialize (IHp1_2 _ p2_2).
remember (plus p1_2 (poly_neg p2_2)) as P; remember (plus p1_1 (poly_neg p2_1)) as Q.
destruct P as [bP P]; destruct Q as [bQ Q].
destruct bP; destruct bQ; simpl in H; try rewrite <- HeqQ in H; try discriminate.
specialize (IHp1_1 eq_refl); specialize (IHp1_2 eq_refl).
depelim IHp1_1; try depelim IHp1_2; auto.
Qed.
Two polynomials with the same values are syntacically equal.
This is shown using poly_nz_eval: the difference of two polynomials with the same values is null. Then use poly_diff_z_eq
Theorem poly_eval_eq : ∀ {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n),
(∀ v, eval p1 v = eval p2 v) →
(b1 ; p1) = (b2; p2) :> { b : bool & poly b n}.
Proof.
intros.
remember (plus p1 (poly_neg p2)) as P; destruct P as [b P]; destruct b.
- apply poly_diff_z_eq; inversion HeqP; auto.
- exfalso.
destruct (@poly_nz_eval n) as [H0 _]; destruct (H0 P) as [v H1].
assert (eval P v = eval (plus p1 (poly_neg p2)).2 v); [inversion HeqP; auto|].
rewrite H2 in H1; autorewrite with eval in H1; rewrite (H v) in H1.
rewrite IsNZ_spec in H1.
nia.
Qed.
(∀ v, eval p1 v = eval p2 v) →
(b1 ; p1) = (b2; p2) :> { b : bool & poly b n}.
Proof.
intros.
remember (plus p1 (poly_neg p2)) as P; destruct P as [b P]; destruct b.
- apply poly_diff_z_eq; inversion HeqP; auto.
- exfalso.
destruct (@poly_nz_eval n) as [H0 _]; destruct (H0 P) as [v H1].
assert (eval P v = eval (plus p1 (poly_neg p2)).2 v); [inversion HeqP; auto|].
rewrite H2 in H1; autorewrite with eval in H1; rewrite (H v) in H1.
rewrite IsNZ_spec in H1.
nia.
Qed.
Multiplication of polynomials
Equations poly_l_or_s {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 (S n)) :
{b : bool & poly b (S n)} :=
poly_l_or_s p1 (b2 := true) p2 := apoly (poly_l p1);
poly_l_or_s p1 (b2 := false) p2 := apoly (poly_s p1 p2).
Lemma poly_l_or_s_eval : ∀ {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 (S n)) h v,
eval (poly_l_or_s p1 p2).2 (Vector.cons h v) =
(eval p1 v + h × eval p2 (Vector.cons h v))%Z.
Proof.
intros.
funelim (poly_l_or_s p1 p2); simp eval; trivial. rewrite poly_z_eval. nia.
Qed.
#[local] Hint Rewrite @poly_l_or_s_eval : eval.
(* mult (poly_l p) q = mult_l q (mult p) *)
Equations mult_l {n} {b2} (p2 : poly b2 (S n)) (m : ∀ {b2} (p2 : poly b2 n), { b : bool & poly b n }) :
{ b : bool & poly b (S n) } :=
mult_l (poly_l p2) m := apoly (poly_l (m _ p2).2);
mult_l (poly_s p1 p2) m := poly_l_or_s (m _ p1).2 (mult_l p2 m).2.
(* mult (poly_s p1 p2) q = mult_s q (mult p1) (mult p2) *)
Equations mult_s {n} {b2} (p2 : poly b2 (S n))
(m1 : ∀ {b2} (p2 : poly b2 n), { b : bool & poly b n })
(m2 : ∀ {b2} (p2 : poly b2 (S n)), { b : bool & poly b (S n) }) :
{ b : bool & poly b (S n) } :=
mult_s (poly_l p1) m1 m2 := poly_l_or_s (m1 _ p1).2 (m2 _ (poly_l p1)).2;
mult_s (poly_s p2 q2) m1 m2 :=
poly_l_or_s (m1 _ p2).2
(plus (m2 _ (poly_l p2)).2 (mult_s q2 m1 m2).2).2.
Finally, the multiplication definition. This relies on the
guard condition being able to unfold the definitions of mult_l and mult_s to
see that multiplication is well-guarded.
Equations mult n b1 (p1 : poly b1 n) b2 (p2 : poly b2 n) : { b : bool & poly b n } :=
mult ?(0) ?(true) poly_z b2 _ := apoly poly_z;
mult ?(0) ?(false) (poly_c x nx) ?(true) poly_z := apoly poly_z;
mult ?(0) ?(false) (poly_c x nx) ?(false) (poly_c y ny) :=
match (x × y)%Z with
| Z0 ⇒ apoly poly_z
| Zpos z' ⇒ apoly (poly_c (Zpos z') I)
| Zneg z' ⇒ apoly (poly_c (Zneg z') I)
end;
mult ?(S n) ?(b) (@poly_l n b p1) b2 q := mult_l q (mult _ _ p1);
mult ?(S n) ?(false) (@poly_s n b p1 q1) b2 q := mult_s q (mult _ _ p1) (mult _ _ q1).
Arguments mult {n} {b1} p1 {b2} p2.
The proof that multiplication is a morphism for evaluation works as usual by induction,
using previously proved lemma to get equations in Z that the nia tactic can handle.
Lemma mult_eval : ∀ {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n) v,
(eval p1 v × eval p2 v)%Z = eval (mult p1 p2).2 v.
Proof with (autorewrite with mult mult_l mult_s eval; auto with zarith).
Ltac Y := (autorewrite with mult mult_l mult_s eval; auto with zarith).
depind p1; try (depind p2; intros; depelim v; Y; simpl; Y; fail).
depind p2; intros; depelim v; Y; simpl; Y; destruct (z × z0)%Z; simpl...
- assert (mult_l_eval : ∀ {b2} (q : poly b2 (S n)) v h,
eval (mult_l q (@mult _ _ p1)).2 (Vector.cons h v) =
(eval q (Vector.cons h v) × eval p1 v)%Z).
+ depind q; intros; Y;
rewrite <- IHp1...
rewrite IHq2; auto; nia.
+ intros; depelim v; Y; simpl; Y; rewrite mult_l_eval...
- assert (mult_s_eval :
∀ {b2} (q : poly b2 (S n)) v h,
let mp := mult_s q (@mult _ _ p1_1) (@mult _ _ p1_2) in
eval mp.2 (Vector.cons h v) =
(eval q (Vector.cons h v) × (eval p1_1 v + h × eval p1_2 (Vector.cons h v)))%Z).
+ depind q; intros; Y; simpl; Y.
rewrite <- IHp1_1, <- IHp1_2; Y; nia.
rewrite <- IHp1_1. rewrite IHq2, <- IHp1_2; auto; Y; nia.
+ intros; depelim v; Y; simpl; Y; rewrite mult_s_eval...
Qed.
#[local] Hint Rewrite <- @mult_eval : eval.
Boolean formulas
Inductive formula {A} :=
| f_var : A → formula
| f_const : bool → formula
| f_and : formula → formula → formula
| f_or : formula → formula → formula
| f_not : formula → formula.
The have a straightforward evaluation semantics to booleans, assuming
an interpretation of the variables into booleans.
Equations eval_formula {A} (v : A → bool) (f : @formula A) : bool :=
eval_formula f (f_var v) := f v;
eval_formula f (f_const b) := b;
eval_formula f (f_and a b) := andb (eval_formula f a) (eval_formula f b);
eval_formula f (f_or a b) := orb (eval_formula f a) (eval_formula f b);
eval_formula f (f_not v) := negb (eval_formula f v).
close_formula allows to obtain a formula with a fixed finite number of free variables from
a formula with with variables in nat.
Definition close_formula : @formula nat → { n : nat & ∀ m, m ≥ n → @formula (Fin.t m) }.
Proof.
intro f; depind f.
- unshelve eapply (S a ; _); intros m p; apply f_var.
apply @Fin.of_nat_lt with (p := a). lia.
- exact (O ; (fun _ _ ⇒ f_const b)).
- destruct IHf1 as [n1 e1]; destruct IHf2 as [n2 e2].
apply (existT _ (max n1 n2)); intros m p; apply f_and; [apply e1|apply e2]; nia.
- destruct IHf1 as [n1 e1]; destruct IHf2 as [n2 e2].
apply (existT _ (max n1 n2)); intros m p; apply f_or; [apply e1|apply e2]; nia.
- destruct IHf as [n e].
apply (existT _ n); intros m p; apply f_not; apply e; nia.
Defined.
Definition close_formulas (f1 f2 : @formula nat) :
{ n : nat & (@formula (Fin.t n) × @formula (Fin.t n))%type }.
Proof.
destruct (close_formula f1) as [n1 e1]; destruct (close_formula f2) as [n2 e2].
apply (existT _ (max n1 n2)); apply pair; [apply e1|apply e2]; nia.
Defined.
Proof.
intro f; depind f.
- unshelve eapply (S a ; _); intros m p; apply f_var.
apply @Fin.of_nat_lt with (p := a). lia.
- exact (O ; (fun _ _ ⇒ f_const b)).
- destruct IHf1 as [n1 e1]; destruct IHf2 as [n2 e2].
apply (existT _ (max n1 n2)); intros m p; apply f_and; [apply e1|apply e2]; nia.
- destruct IHf1 as [n1 e1]; destruct IHf2 as [n2 e2].
apply (existT _ (max n1 n2)); intros m p; apply f_or; [apply e1|apply e2]; nia.
- destruct IHf as [n e].
apply (existT _ n); intros m p; apply f_not; apply e; nia.
Defined.
Definition close_formulas (f1 f2 : @formula nat) :
{ n : nat & (@formula (Fin.t n) × @formula (Fin.t n))%type }.
Proof.
destruct (close_formula f1) as [n1 e1]; destruct (close_formula f2) as [n2 e2].
apply (existT _ (max n1 n2)); apply pair; [apply e1|apply e2]; nia.
Defined.
Definitions of constant 0 poly_zero and 1 poly_one polynomials along with variable polynomials
poly_var and corresponding evaluation lemmas
Fixpoint poly_zero {n} : poly true n :=
match n with
| O ⇒ poly_z
| S m ⇒ poly_l poly_zero
end.
Lemma zero_eval : ∀ n v, 0%Z = eval (@poly_zero n) v.
Proof. intros; rewrite poly_z_eval; auto. Qed.
#[local] Hint Rewrite <- @zero_eval : eval.
Fixpoint poly_one {n} : poly false n :=
match n with
| O ⇒ poly_c 1%Z I
| S m ⇒ poly_l poly_one
end.
Lemma one_eval : ∀ n v, 1%Z = eval (@poly_one n) v.
Proof. depind n; depelim v; intros; simpl; autorewrite with eval; auto. Qed.
#[local] Hint Rewrite <- @one_eval : eval.
We define an injection of variables represented as indices in Fin.t n into
non-null polynoms of n variables:
Equations poly_var {n} (f : Fin.t n) : poly false n :=
poly_var Fin.F1 := poly_s poly_zero poly_one;
poly_var (Fin.FS f) := poly_l (poly_var f).
We can show that evaluation of the corresponding polynomial corresponds to
simply fetching the value at the index in the valuation.
Lemma var_eval : ∀ n f v, Vector.nth v f = eval (@poly_var n f) v.
Proof with autorewrite with poly_var eval in *; simpl; auto with zarith.
induction f; depelim v; intros...
Qed.
#[local] Hint Rewrite <- @var_eval : eval.
Finally, we explain our interpretation of formulas as polynomials:
Equations poly_of_formula {n} (f : @formula (Fin.t n)) : { b : bool & poly b n } :=
poly_of_formula (f_var v) := apoly (poly_var v);
poly_of_formula (f_const false) := apoly poly_zero;
poly_of_formula (f_const true) := apoly poly_one;
poly_of_formula (f_not a) := plus poly_one (poly_neg (poly_of_formula a).2);
poly_of_formula (f_and a b) := mult (poly_of_formula a).2 (poly_of_formula b).2;
poly_of_formula (f_or a b) := plus (poly_of_formula a).2
(plus (poly_of_formula b).2
(poly_neg (mult (poly_of_formula a).2 (poly_of_formula b).2).2)).2.
The central theorem is that evaluating the formula in some valuation
is the same as evaluating the translated polynomial.
Theorem poly_of_formula_eval :
∀ {n} (f : @formula (Fin.t n)) (v : Vector.t bool n),
(if eval_formula (Vector.nth v) f then 1%Z else 0%Z) =
eval (poly_of_formula f).2 (Vector.map (fun x : bool ⇒ if x then 1%Z else 0%Z) v).
From this, we can derive that two boolean formulas are equivalent if
the translated polynomials are themselves syntactically equal,
thanks to their canonical representation.
Lemma correctness_heyting : ∀ {n} (f1 f2 : @formula (Fin.t n)),
poly_of_formula f1 = poly_of_formula f2 →
∀ v, eval_formula (Vector.nth v) f1 = eval_formula (Vector.nth v) f2.
Proof.
intros n f1 f2 H v.
assert (H1 := poly_of_formula_eval f1 v); assert (H2 := poly_of_formula_eval f2 v).
remember (eval_formula (Vector.nth v) f1) as b1; remember (eval_formula (Vector.nth v) f2) as b2.
rewrite H in H1; rewrite <- H1 in H2.
destruct b1; destruct b2; simpl in *; (discriminate || auto).
Qed.
Completeness
Equations reduce_aux {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 (S n)) : { b : bool & poly b (S n) } :=
reduce_aux p1 (poly_l p2) := poly_l_or_s p1 (poly_l p2);
reduce_aux p1 (poly_s p2_1 p2_2) := poly_l_or_s p1 (plus (poly_l p2_1) p2_2).2.
Equations reduce {n} {b} (p : poly b n) : { b : bool & poly b n } :=
reduce poly_z := apoly poly_z;
reduce (poly_c x y) := apoly (poly_c x y);
reduce (poly_l p) := apoly (poly_l (reduce p).2);
reduce (poly_s p q) := reduce_aux (reduce p).2 (reduce q).2.
Theorem reduce_eval :
∀ {n} {b} (p : poly b n) (v : Vector.t bool n),
eval p (Vector.map (fun x : bool ⇒ if x then 1%Z else 0%Z) v) =
eval (reduce p).2 (Vector.map (fun x : bool ⇒ if x then 1%Z else 0%Z) v).
Proof.
Ltac YY := autorewrite with reduce reduce_aux eval; auto.
depind p; intros; depelim v; YY.
- rewrite IHp1, (IHp2 (Vector.cons h v)).
remember (reduce p2) as P.
destruct P as [bP P]. simpl. depelim P; simpl; YY.
destruct h; nia.
Qed.
Inductive is_reduced : ∀ {b} {n}, poly b n → Prop :=
| is_reduced_z : is_reduced poly_z
| is_reduced_c : ∀ {z} {i}, is_reduced (poly_c z i)
| is_reduced_l : ∀ {b} {n} (p : poly b n), is_reduced p → is_reduced (poly_l p)
| is_reduced_s : ∀ {b1} {n} (p : poly b1 n) (q : poly false n),
is_reduced p → is_reduced q → is_reduced (poly_s p (poly_l q))
.
Derive Signature for is_reduced.
Lemma is_reduced_compat_plus : ∀ {n} {b1} (p1 : poly b1 n) (Hp1 : is_reduced p1)
{b2} (p2 : poly b2 n) (Hp2 : is_reduced p2),
is_reduced (plus p1 p2).2.
Proof.
intros.
depind Hp1; depelim Hp2; autorewrite with plus; unfold apoly; try constructor; auto.
remember (z+z0)%Z as Z; destruct Z; constructor.
specialize (IHHp1_2 _ q0 Hp2_2).
remember (plus q q0) as Q; destruct Q as [bQ Q].
destruct bQ; simpl. constructor; auto. constructor; auto.
Qed.
Lemma is_reduced_compat_neg : ∀ {n} {b1} (p1 : poly b1 n) (Hp1 : is_reduced p1),
is_reduced (poly_neg p1).
Proof.
intros. depind Hp1; try destruct z, i; autorewrite with poly_neg; try constructor; auto.
Qed.
Lemma is_reduced_ok : ∀ {b} {n} (p : poly b n), is_reduced (reduce p).2.
Proof.
depind p; try constructor; auto.
autorewrite with reduce reduce_aux.
remember (reduce p2) as P2; destruct P2 as [bP2 P2]; depelim P2.
destruct bP2; simpl. constructor. auto. constructor; auto. depelim IHp2. auto.
depelim IHp2. autorewrite with reduce_aux plus. unfold apoly. simpl.
assert (R := is_reduced_compat_plus _ IHp2_1 _ IHp2_2).
remember (plus P2_1 q) as P3; destruct P3 as [bP3 P3]. simpl.
simpl in ×.
destruct bP3; simpl; constructor; auto.
Qed.
Lemma red_ok : ∀ {n} {b} (p : poly b n),
is_reduced p →
(∀ v, eval p (Vector.map (fun x : bool ⇒ if x then 1%Z else 0%Z) v) = 0%Z) →
b = true.
Proof.
intros n b p Hp H; depind Hp.
- auto.
- specialize (H Vector.nil); autorewrite with eval in H; destruct z, i; discriminate.
- apply IHHp. intro v. specialize (H (Vector.cons false v)). autorewrite with eval in H. auto.
- assert (b1 = true).
+ apply IHHp1. intro v. specialize (H (Vector.cons false v)). autorewrite with eval in H. simpl in H. rewrite Z.add_0_r in H. auto.
+ subst. apply IHHp2.
intro v. specialize (H (Vector.cons true v)). simpl in H. autorewrite with eval in H. rewrite poly_z_eval in H. nia.
Qed.
We have completeness for this form:
Lemma correctness_classical : ∀ {n} (f1 f2 : @formula (Fin.t n)),
reduce (poly_of_formula f1).2 = reduce (poly_of_formula f2).2 ↔
∀ v, eval_formula (Vector.nth v) f1 = eval_formula (Vector.nth v) f2.
Proof.
intros n f1 f2; split.
- intros H v.
assert (H1 := poly_of_formula_eval f1 v); assert (H2 := poly_of_formula_eval f2 v).
rewrite reduce_eval in H1; rewrite reduce_eval in H2.
remember (eval_formula (Vector.nth v) f1) as b1; remember (eval_formula (Vector.nth v) f2) as b2.
rewrite H in H1; rewrite <- H1 in H2.
destruct b1; destruct b2; simpl in *; (discriminate || auto).
- intros.
assert ((plus (reduce (poly_of_formula f1).2).2
(poly_neg (reduce (poly_of_formula f2).2).2)).1 = true).
+ apply red_ok with (p := (plus (reduce (poly_of_formula f1).2).2
(poly_neg (reduce (poly_of_formula f2).2).2)).2).
× auto using is_reduced_compat_plus, is_reduced_ok, is_reduced_compat_neg.
× intro; autorewrite with eval.
assert (H1 := poly_of_formula_eval f1 v); assert (H2 := poly_of_formula_eval f2 v).
rewrite <- !reduce_eval, <- H1, <- H2, (H v); nia.
+ apply poly_diff_z_eq in H0.
remember (reduce (poly_of_formula f1).2) as P1; destruct P1 as [bP1 P1].
remember (reduce (poly_of_formula f2).2) as P2; destruct P2 as [bP2 P2].
destruct bP1; destruct bP2; auto; simpl in H0; depelim H0; auto.
Qed.
One can check that all definitions here are axiom free, and only the proofs
which depend on unfolding lemmas use the functional_extensionality_dep axiom.
From this it is possible to derive a tactic for checking equivalence of boolean
formulas. We skip the standard reification machinery and check on a few examples
that indeed our tactic computes.
Reflexive tactic
Ltac list_add a l :=
let rec aux a l n :=
match l with
| nil ⇒ constr:((n, cons a l))
| cons a _ ⇒ constr:((n, l))
| cons ?x ?l ⇒
match aux a l (S n) with (?n, ?l) ⇒ constr:((n, cons x l)) end
end in
aux a l 0.
Ltac vector_of_list l :=
match l with
| nil ⇒ constr:(Vector.nil)
| cons ?x ?xs ⇒ constr:(Vector.cons x xs)
end.
Reify boolean formulas with variables in nat
Ltac read_formula f l :=
match f with
| true ⇒ constr:((@f_const nat true, l))
| false ⇒ constr:((@f_const nat false, l))
| orb ?x ?y ⇒ match read_formula x l with (?x', ?l') ⇒
match read_formula y l' with (?y', ?l'') ⇒ constr:((f_or x' y', l''))
end end
| andb ?x ?y ⇒ match read_formula x l with (?x', ?l') ⇒
match read_formula y l' with (?y', ?l'') ⇒ constr:((f_and x' y', l''))
end end
| negb ?x ⇒ match read_formula x l with (?x', ?l') ⇒ constr:((f_not x', l')) end
| _ ⇒ match list_add f l with (?n, ?l') ⇒ constr:((f_var n, l')) end
end.
Ltac read_formulas x y :=
match read_formula x (@nil bool) with (?x', ?l) ⇒
match read_formula y l with (?y', ?l') ⇒ constr:(((x', y'), l'))
end end.
The final reflexive tactic, taking either of the correctness lemmas as argument.
Ltac bool_tauto_with f :=
intros;
match goal with
| [ |- ?x = ?y ] ⇒
match read_formulas x y with
| ((?x', ?y'), ?l) ⇒
let ln := fresh "l" in
let xyn := fresh "xy" in
let nn := fresh "n" in
let xn := fresh "x" in
let yn := fresh "y" in
match vector_of_list l with ?lv ⇒ pose (ln := lv) end;
pose (xyn := close_formulas x' y');
pose (n := xyn.1); pose (xn := fst xyn.2); pose (yn := snd xyn.2);
cbv in xyn, n, xn, yn;
assert (H : eval_formula (Vector.nth ln) xn = eval_formula (Vector.nth ln) yn);
[ apply f; vm_compute; reflexivity
| exact H
]
end
end.
Examples
Goal ∀ a b, andb a b = andb b a.
bool_tauto_with @correctness_heyting.
Qed.
Goal ∀ a b, andb (negb a) (negb b) = negb (orb a b).
bool_tauto_with @correctness_heyting.
Qed.
Goal ∀ a b, orb (negb a) (negb b) = negb (andb a b).
bool_tauto_with @correctness_heyting.
Qed.
Example neg_involutive: ∀ a, orb (negb a) a = true.
Fail bool_tauto_with @correctness_heyting.
bool_tauto_with @correctness_classical.
Qed.
This page has been generated by coqdoc