Definitional interpreter for STLC extended with references

This is a port of the first part of "Intrinsically-Typed Definitional Interpreters for Imperative Languages", Poulsen, Rouvoet, Tolmach, Krebbers and Visser. POPL'18.
It uses well-typed and well-scoped syntax and a monad indexed over an indexed set of stores to define an interpreter for an imperative programming language.
This showcases the use of dependent pattern-matching and pattern-matching lambdas in Equations. We implement a variant where store extension is resolved using type class resolution as well as the dependent-passing style version.

From Stdlib Require Import Program.Basics Program.Tactics.
#[warnings="-warn-library-file-stdlib-vector"]
Require Import Stdlib.Vectors.VectorDef.
From Stdlib Require Import List.
Import ListNotations.
From Stdlib Require Import Utf8.
From Equations.Prop Require Import Equations.

Set Warnings "-notation-overridden".
The Σ notation of equations clashes with the Σ's used below, so we redefine the Σ notation using ∃ instead.

Notation "'∃' x .. y , P" := (sigma (fun x ⇒ .. (sigma (fun yP)) ..))
  : type_scope.

Notation "( x , .. , y , z )" :=
  (@sigmaI _ _ x .. (@sigmaI _ _ y z) ..)
      (right associativity, at level 0,
       format "( x , .. , y , z )") : equations_scope.

Notation " x .1 " := (pr1 x) : equations_scope.
Notation " x .2 " := (pr2 x) : equations_scope.

Local Open Scope equations_scope.

Set Equations Transparent.

t is just Vector.t here.
Derive Signature NoConfusion NoConfusionHom for t.

Types include unit, bool, function types and references
Inductive Ty : Set :=
| unit : Ty
| bool : Ty
| arrow (t u : Ty) : Ty
| ref : TyTy.

Derive NoConfusion for Ty.

Infix "⇒" := arrow (at level 80).

Definition Ctx := list Ty.

Reserved Notation " x ∈ s " (at level 70, s at level 10).

#[universes(template)]
Inductive In {A} (x : A) : list AType :=
| here {xs} : x ∈ (x :: xs)
| there {y xs} : xxsx ∈ (y :: xs)
where " x ∈ s " := (In x s).
Derive Signature NoConfusion for In.

Arguments here {A x xs}.
Arguments there {A x y xs} _.

Inductive Expr : CtxTySet :=
| tt {Γ} : Expr Γ unit
| true {Γ} : Expr Γ bool
| false {Γ} : Expr Γ bool
| ite {Γ t} : Expr Γ boolExpr Γ tExpr Γ tExpr Γ t
| var {Γ} {t} : In t ΓExpr Γ t
| abs {Γ} {t u} : Expr (t :: Γ) uExpr Γ (tu)
| app {Γ} {t u} : Expr Γ (tu) → Expr Γ tExpr Γ u


| new {Γ t} : Expr Γ tExpr Γ (ref t)
| deref {Γ t} : Expr Γ (ref t) → Expr Γ t
| assign {Γ t} : Expr Γ (ref t) → Expr Γ tExpr Γ unit.

We derive both NoConfusion and NoConfusionHom principles here, the later allows to simplify pattern-matching problems on Expr which would otherwise require K. It relies on an inversion analysis of every constructor, showing that the context and type indexes in the conclusions of every constructor are forced arguments.
Derive Signature NoConfusion NoConfusionHom for Expr.

#[universes(template)]
Inductive All {A} (P : AType) : list AType :=
| all_nil : All P []
| all_cons {x xs} : P xAll P xsAll P (x :: xs).
Arguments all_nil {A} {P}.
Arguments all_cons {A P x xs} _ _.
Derive Signature NoConfusion NoConfusionHom for All.

Section MapAll.
  Context {A} {P Q : AType} (f : x, P xQ x).

  Equations map_all {l : list A} : All P lAll Q l :=
   | all_nil := all_nil
   | all_cons p ps := all_cons (f _ p) (map_all ps).

  Equations map_all_in {l : list A} (f : x, xlP xQ x) : All P lAll Q l :=
    | f, all_nil := all_nil
    | f, all_cons p ps := all_cons (f _ here p) (map_all_in (fun x inlf x (there inl)) ps).
End MapAll.

Definition StoreTy := list Ty.

Inductive Val : TyStoreTySet :=
| val_unit {Σ} : Val unit Σ
| val_true {Σ} : Val bool Σ
| val_false {Σ} : Val bool Σ
| val_closure {Σ Γ t u} : Expr (t :: Γ) uAll (fun tVal t Σ) ΓVal (tu) Σ
| val_loc {Σ t} : tΣVal (ref t) Σ.

Derive Signature NoConfusion NoConfusionHom for Val.

Definition Env (Γ : Ctx) (Σ : StoreTy) : Set := All (fun tVal t Σ) Γ.

Definition Store (Σ : StoreTy) := All (fun tVal t Σ) Σ.

Equations lookup : {A P xs} {x : A}, All P xsxxsP x :=
  lookup (all_cons p _) here := p;
  lookup (all_cons _ ps) (there ins) := lookup ps ins.

Equations update : {A P xs} {x : A}, All P xsxxsP xAll P xs :=
  update (all_cons p ps) here p' := all_cons p' ps;
  update (all_cons p ps) (there ins) p' := all_cons p (update ps ins p').

Equations lookup_store {Σ t} : tΣStore ΣVal t Σ :=
  lookup_store l σ := lookup σ l.

Equations update_store {Σ t} : tΣVal t ΣStore ΣStore Σ :=
  update_store l v σ := update σ l v.

Definition store_incl (Σ Σ' : StoreTy) := sigma (fun Σ''Σ' = Σ'' ++ Σ).
Infix "⊑" := store_incl (at level 10).

Equations app_assoc {A} (x y z : list A) : x ++ y ++ z = (x ++ y) ++ z :=
  app_assoc nil y z := eq_refl;
  app_assoc (cons x xs) y z := f_equal (cons x) (app_assoc xs y z).

Section StoreIncl.
  Equations pres_in {Σ Σ'} (incl : ΣΣ') t (p : tΣ) : tΣ' :=
    pres_in (Σ'', eq_refl) t p := aux Σ''
       where aux Σ'' : t ∈ (Σ'' ++ Σ) :=
       aux nil := p;
       aux (cons ty tys) := there (aux tys).

  Equations refl_incl {Σ} : ΣΣ := refl_incl := ([], eq_refl).

  Equations trans_incl {Σ Σ' Σ''} (incl : ΣΣ') (incl' : Σ'Σ'') : ΣΣ'' :=
    trans_incl (p, eq_refl) (q, eq_refl) := (q ++ p, app_assoc _ _ _).

  Equations store_ext_incl {Σ t} : Σ ⊑ (t :: Σ) :=
    store_ext_incl := ([t], eq_refl).

  Context {Σ Σ'} (incl : ΣΣ').

  Equations weaken_val {t} (v : Val t Σ) : Val t Σ' := {
   weaken_val (@val_unit ?(Σ)) := val_unit;
   weaken_val val_true := val_true;
   weaken_val val_false := val_false;
   weaken_val (val_closure b e) := val_closure b (weaken_vals e);
   weaken_val (val_loc H) := val_loc (pres_in incl _ H) }
  where weaken_vals {l} (a : All (fun tVal t Σ) l) : All (fun tVal t Σ') l :=
  weaken_vals all_nil := all_nil;
  weaken_vals (all_cons p ps) := all_cons (weaken_val p) (weaken_vals ps).

  Equations weakenv_vals {l} a : @weaken_vals l a = map_all (fun t vweaken_val v) a :=
    weakenv_vals all_nil := eq_refl;
    weakenv_vals (all_cons p ps) := f_equal (all_cons (weaken_val p)) (weakenv_vals ps).

  Definition weaken_env {Γ} (v : Env Γ Σ) : Env Γ Σ' := map_all (@weaken_val) v.

End StoreIncl.

Infix "⊚" := trans_incl (at level 10).

Equations M : (Γ : Ctx) (P : StoreTyType) (Σ : StoreTy), Type :=
  M Γ P Σ := (E : Env Γ Σ) (μ : Store Σ), option (∃ Σ' (μ' : Store Σ') (_ : P Σ'), ΣΣ').

Equations bind {Σ Γ} {P Q : StoreTyType} (f : M Γ P Σ) (g : ∀ {Σ'}, P Σ'M Γ Q Σ') : M Γ Q Σ :=
  bind f g E μ with f E μ :=
     | None := None
     | Some (Σ', μ', x, ext) with g _ x (weaken_env ext E) μ' :=
          | None := None;
          | Some (_, μ'', y, ext') := Some (_, μ'', y, extext').

Infix ">>=" := bind (at level 20, left associativity).

Definition transp_op {Γ Σ P} (x : Store ΣP Σ) : M Γ P Σ :=
  fun E μSome (Σ, μ, x μ, refl_incl).

Equations ret : ∀ {Γ Σ P}, P ΣM Γ P Σ :=
  ret (Σ:=Σ) a E μ := Some (Σ, μ, a, refl_incl).

Equations getEnv : ∀ {Γ Σ}, M Γ (Env Γ) Σ :=
  getEnv (Σ:=Σ) E μ := Some (Σ, μ, E, refl_incl).

Equations usingEnv {Γ Γ' Σ P} (E : Env Γ Σ) (m : M Γ P Σ) : M Γ' P Σ :=
  usingEnv E m E' μ := m E μ.

Equations timeout : ∀ {Γ Σ P}, M Γ P Σ :=
  timeout _ _ := None.

Section StoreOps.
  Context {Σ : StoreTy} {Γ : Ctx} {t : Ty}.

  Equations storeM (v : Val t Σ) : M Γ (Val (ref t)) Σ :=
    storeM v E μ :=
      let v : Val t (t :: Σ) := weaken_val store_ext_incl v in
      let μ' := map_all (fun t'weaken_val store_ext_incl) μ in
      Some (t :: Σ, all_cons v μ', val_loc here, store_ext_incl).

  Equations derefM (l : tΣ) : M Γ (Val t) Σ :=
    derefM l := transp_op (lookup_store l).

  Equations updateM (l : tΣ) (v : Val t Σ) : M Γ (Val unit) Σ :=
    updateM l v E μ := Some (Σ, update_store l v μ, val_unit, refl_incl).
End StoreOps.

Reserved Notation "P ⊛ Q" (at level 10).

Inductive storepred_prod (P Q : StoreTyType) : StoreTyType :=
  | storepred_pair {Σ} : P ΣQ Σ → (PQ) Σ
where "P ⊛ Q" := (storepred_prod P Q).
Arguments storepred_pair {P Q Σ}.

Class Weakenable (P : StoreTyType) : Type :=
  weaken : {Σ Σ'}, ΣΣ'P ΣP Σ'.

#[local] Instance val_weaken {t} : Weakenable (Val t) := fun Σ Σ' inclweaken_val incl.
#[local] Instance env_weaken {Γ} : Weakenable (Env Γ) := fun Σ Σ' inclweaken_env incl.
#[local] Instance loc_weaken (t : Ty) : Weakenable (In t) := fun Σ Σ' inclpres_in incl t.

Class IsIncludedOnce (Σ Σ' : StoreTy) : Type := is_included_once : ΣΣ'.
#[local] Hint Mode IsIncludedOnce + + : typeclass_instances.

#[local] Instance IsIncludedOnce_ext {T} Σ : IsIncludedOnce Σ (T :: Σ) := store_ext_incl.

Class IsIncluded (Σ Σ' : StoreTy) : Type := is_included : ΣΣ'.
#[local] Hint Mode IsIncluded + + : typeclass_instances.

#[local] Instance IsIncluded_refl Σ : IsIncluded Σ Σ := refl_incl.
#[local] Instance IsIncluded_trans Σ Σ' Σ'' : IsIncludedOnce Σ Σ'IsIncluded Σ' Σ''IsIncluded Σ Σ'' :=
  fun H H'trans_incl H H'.

Equations wk {Σ Σ' P} {W : Weakenable P} (p : P Σ) {incl : IsIncluded Σ Σ'} : P Σ' :=
  wk p := weaken incl p.

Equations bind_ext {Σ Γ} {P Q : StoreTyType} (f : M Γ P Σ) (g : ∀ {Σ'} `{IsIncluded Σ Σ'}, P Σ'M Γ Q Σ') : M Γ Q Σ :=
  bind_ext f g E μ with f E μ :=
    { | None := None;
      | Some (Σ', μ', x, ext) with g _ ext x (weaken_env ext E) μ' :=
          { | None := None;
            | Some (_, μ'', y, ext') := Some (_, μ'', y, extext') } }.

Infix ">>='" := bind_ext (at level 20, left associativity).

Equations eval_ext (n : nat) {Γ Σ t} (e : Expr Γ t) : M Γ (Val t) Σ :=
  | 0, _ := timeout
  | S k, tt := ret val_unit
  | S k, true := ret val_true
  | S k, false := ret val_false
  | S k, ite b tr fa := eval_ext k b >>=' λ{ | _ | ext | val_trueeval_ext k tr;
                                                      | _ | ext | val_falseeval_ext k fa }

  | S k, var x := getEnv >>=' fun {Σ ext} Eret (lookup E x)
  | S k, abs x := getEnv >>=' fun {Σ ext} Eret (val_closure x E)
  | S k, @app Γ A B e1 e2 :=
      eval_ext k e1 >>=' λ{ | _ | ext | val_closure e' E
      eval_ext k e2 >>=' fun {Σ' ext'} vusingEnv (all_cons v (wk (P:=Env _) E)) (eval_ext k e')}
  | S k, new e := eval_ext k e >>=' fun {Σ ext} vstoreM v
  | S k, deref l := eval_ext k l >>=' λ{ | _ | ext | val_loc l'derefM l' }
  | S k, assign l e := eval_ext k l >>=' λ{ | _ | ext | val_loc l'
                                eval_ext k e >>=' λ{ | _ | ext' | vupdateM (wk l') (wk v) }}.

Equations strength {Σ Γ} {P Q : StoreTyType} {w : Weakenable Q} (m : M Γ P Σ) (q : Q Σ) : M Γ (PQ) Σ :=
  strength m q E μ with m E μ ⇒ {
    | NoneNone
    | Some (Σ', μ', p, ext) ⇒ Some (Σ', μ', storepred_pair p (weaken ext q), ext) }.

Infix "^" := strength.

(* Issue: improve pattern matching lambda to have implicit arguments implicit.
   Hard because Coq does not keep the implicit status of bind's g argument. *)


Equations eval (n : nat) {Γ Σ t} (e : Expr Γ t) : M Γ (Val t) Σ :=
  eval 0 _ := timeout;
  eval (S k) tt := ret val_unit;
  eval (S k) true := ret val_true;
  eval (S k) false := ret val_false;
  eval (S k) (ite b tr fa) := eval k b >>= λ{ | _ | val_trueeval k tr;
                                             | _ | val_falseeval k fa };

  eval (S k) (var x) := getEnv >>= fun Σ Eret (lookup E x);
  eval (S k) (abs x) := getEnv >>= fun Σ Eret (val_closure x E);
  eval (S k) (app e1 e2) :=
      eval k e1 >>= λ{ | _ | val_closure e' E
                             (eval k e2 ^ E) >>= fun Σ' '(storepred_pair v E) ⇒ usingEnv (all_cons v E) (eval k e')};
  eval (S k) (new e) := eval k e >>= fun Σ vstoreM v;
  eval (S k) (deref l) := eval k l >>= λ{ | _ | val_loc l'derefM l' };
  eval (S k) (assign l e) := eval k l >>= λ{ | _ | val_loc l'
                             (eval k e ^ l') >>= λ{ | _ | storepred_pair v l''updateM l'' v }}.

Definition idu : Expr [] (unitunit) :=
  abs (var here).

Definition idapp : Expr [] unit := app idu tt.

All definitions are axiom-free (and actually not even dependent on a provable UIP instance), so everything computes.
Eval vm_compute in eval 100 idapp all_nil all_nil.

Definition neg : Expr [] (boolbool) :=
  abs (ite (var here) false true).

Definition letref {t u} (v : Expr [] t) (b : Expr [ref t] u) : Expr [] u :=
  app (abs b) (new v).
Local Obligation Tactic := idtac.

Equations in_app_weaken {Σ Σ' Σ'' : StoreTy} {t} (p : t ∈ (Σ ++ Σ'')) : t ∈ (Σ ++ Σ' ++ Σ'') by struct Σ :=
  in_app_weaken (Σ:=nil) p := pres_in (Σ', eq_refl) t p;
  in_app_weaken (Σ:=cons _ tys) here := here;
  in_app_weaken (Σ:=cons _ tys) (there p) := there (in_app_weaken p).

Equations pres_in_prefix {Σ Σ' Σ''} (incl : Σ'Σ'') {t} (p : t ∈ (Σ ++ Σ')) : t ∈ (Σ ++ Σ'') :=
  pres_in_prefix (Σ'', eq_refl) p := in_app_weaken p.

Equations? enters refinement mode, which can be used to solve the case of variables in proof mode.
Equations? weaken_expr {Γ Γ' t u} (e1 : Expr (Γ ++ Γ') t) : Expr (Γ ++ u :: Γ') t :=
  weaken_expr tt := tt;
  weaken_expr true := true;
  weaken_expr false := false;
  weaken_expr (ite b tr fa) := ite (weaken_expr b) (weaken_expr tr) (weaken_expr fa);
  weaken_expr (var (t:=ty) x) := var _;
  weaken_expr (abs (t:=t) x) := abs (weaken_expr (Γ := t :: Γ) x);
  weaken_expr (app e1 e2) := app (weaken_expr e1) (weaken_expr e2);
  weaken_expr (new e) := new (weaken_expr e);
  weaken_expr (deref l) := deref (weaken_expr l);
  weaken_expr (assign l e) := assign (weaken_expr l) (weaken_expr e).
Proof.
  clear weaken_expr. apply (pres_in_prefix (Σ' := Γ') ([u], eq_refl) x).
Defined.

Definition seq {Γ u} (e1 : Expr Γ unit) (e2 : Expr Γ u) : Expr Γ u :=
  app (abs (weaken_expr (Γ := []) e2)) e1.

(* let x = ref true in
   x := false; !x *)


Definition letupdate : Expr [] bool :=
  letref true (seq (assign (var here) false) (deref (var here))).

Eval vm_compute in eval 100 letupdate all_nil all_nil.

   = Some ([bool], all_cons val_false all_nil, val_false, [bool], eq_refl)
   : option (∃ (Σ' : StoreTy) (_ : Store Σ') (_ : Val bool Σ'), [] ⊑ Σ')

This page has been generated by coqdoc