Definitional interpreter for STLC extended with references

This is a port of the first part of "Intrinsically-Typed Definitional Interpreters for Imperative Languages", Poulsen, Rouvoet, Tolmach, Krebbers and Visser. POPL'18.
It uses well-typed and well-scoped syntax and a monad indexed over an indexed set of stores to define an interpreter for an imperative programming language.
This showcases the use of dependent pattern-matching and pattern-matching lambdas in Equations. We implement a variant where store extension is resolved using type class resolution as well as the dependent-passing style version.
The Σ notation of equations clashes with the Σ's used below, so we redefine the Σ notation using ∃ instead.

Notation "'∃' x .. y , P" := (sigma (fun x .. (sigma (fun y P)) ..))
  (at level 200, x binder, y binder, right associativity,
  format "'[ ' '[ ' ∃ x .. y ']' , '/' P ']'") : type_scope.

Notation "( x , .. , y , z )" :=
  (@sigmaI _ _ x .. (@sigmaI _ _ y z) ..)
      (right associativity, at level 0,
       format "( x , .. , y , z )") : equations_scope.

Notation " x .1 " := (pr1 x) (at level 3, format "x .1") : equations_scope.
Notation " x .2 " := (pr2 x) (at level 3, format "x .2") : equations_scope.

Local Open Scope equations_scope.

Set Equations Transparent.

t is just Vector.t here.
Types include unit, bool, function types and references
We derive both NoConfusion and NoConfusionHom principles here, the later allows to simplify pattern-matching problems on Expr which would otherwise require K. It relies on an inversion analysis of every constructor, showing that the context and type indexes in the conclusions of every constructor are forced arguments.
Derive Signature NoConfusion NoConfusionHom for Expr.

#[universes(template)]
Inductive All {A} (P : A Type) : list A Type :=
| all_nil : All P []
| all_cons {x xs} : P x All P xs All P (x :: xs).
Arguments all_nil {A} {P}.
Arguments all_cons {A P x xs} _ _.
Derive Signature NoConfusion NoConfusionHom for All.

Section MapAll.
  Context {A} {P Q : A Type} (f : x, P x Q x).

  Equations map_all {l : list A} : All P l All Q l :=
   | all_nil := all_nil
   | all_cons p ps := all_cons (f _ p) (map_all ps).

  Equations map_all_in {l : list A} (f : x, x l P x Q x) : All P l All Q l :=
    | f, all_nil := all_nil
    | f, all_cons p ps := all_cons (f _ here p) (map_all_in (fun x inl f x (there inl)) ps).
End MapAll.

Definition StoreTy := list Ty.

Inductive Val : Ty StoreTy Set :=
| val_unit {Σ} : Val unit Σ
| val_true {Σ} : Val bool Σ
| val_false {Σ} : Val bool Σ
| val_closure {Σ Γ t u} : Expr (t :: Γ) u All (fun t Val t Σ) Γ Val (t u) Σ
| val_loc {Σ t} : t Σ Val (ref t) Σ.

Derive Signature NoConfusion NoConfusionHom for Val.

Definition Env (Γ : Ctx) (Σ : StoreTy) : Set := All (fun t Val t Σ) Γ.

Definition Store (Σ : StoreTy) := All (fun t Val t Σ) Σ.

Equations lookup : {A P xs} {x : A}, All P xs x xs P x :=
  lookup (all_cons p _) here := p;
  lookup (all_cons _ ps) (there ins) := lookup ps ins.

Equations update : {A P xs} {x : A}, All P xs x xs P x All P xs :=
  update (all_cons p ps) here p' := all_cons p' ps;
  update (all_cons p ps) (there ins) p' := all_cons p (update ps ins p').

Equations lookup_store {Σ t} : t Σ Store Σ Val t Σ :=
  lookup_store l σ := lookup σ l.

Equations update_store {Σ t} : t Σ Val t Σ Store Σ Store Σ :=
  update_store l v σ := update σ l v.

Definition store_incl (Σ Σ' : StoreTy) := sigma (fun Σ'' Σ' = Σ'' ++ Σ).
Infix "" := store_incl (at level 10).

Equations app_assoc {A} (x y z : list A) : x ++ y ++ z = (x ++ y) ++ z :=
  app_assoc nil y z := eq_refl;
  app_assoc (cons x xs) y z := f_equal (cons x) (app_assoc xs y z).

Section StoreIncl.
  Equations pres_in {Σ Σ'} (incl : Σ Σ') t (p : t Σ) : t Σ' :=
    pres_in (Σ'', eq_refl) t p := aux Σ''
       where aux Σ'' : t (Σ'' ++ Σ) :=
       aux nil := p;
       aux (cons ty tys) := there (aux tys).

  Equations refl_incl {Σ} : Σ Σ := refl_incl := ([], eq_refl).

  Equations trans_incl {Σ Σ' Σ''} (incl : Σ Σ') (incl' : Σ' Σ'') : Σ Σ'' :=
    trans_incl (p, eq_refl) (q, eq_refl) := (q ++ p, app_assoc _ _ _).

  Equations store_ext_incl {Σ t} : Σ (t :: Σ) :=
    store_ext_incl := ([t], eq_refl).

  Context {Σ Σ'} (incl : Σ Σ').

  Equations weaken_val {t} (v : Val t Σ) : Val t Σ' := {
   weaken_val (@val_unit ?(Σ)) := val_unit;
   weaken_val val_true := val_true;
   weaken_val val_false := val_false;
   weaken_val (val_closure b e) := val_closure b (weaken_vals e);
   weaken_val (val_loc H) := val_loc (pres_in incl _ H) }
  where weaken_vals {l} (a : All (fun t Val t Σ) l) : All (fun t Val t Σ') l :=
  weaken_vals all_nil := all_nil;
  weaken_vals (all_cons p ps) := all_cons (weaken_val p) (weaken_vals ps).

  Equations weakenv_vals {l} a : @weaken_vals l a = map_all (fun t v weaken_val v) a :=
    weakenv_vals all_nil := eq_refl;
    weakenv_vals (all_cons p ps) := f_equal (all_cons (weaken_val p)) (weakenv_vals ps).

  Definition weaken_env {Γ} (v : Env Γ Σ) : Env Γ Σ' := map_all (@weaken_val) v.

End StoreIncl.

Infix "" := trans_incl (at level 10).

Equations M : (Γ : Ctx) (P : StoreTy Type) (Σ : StoreTy), Type :=
  M Γ P Σ := (E : Env Γ Σ) (μ : Store Σ), option ( Σ' (μ' : Store Σ') (_ : P Σ'), Σ Σ').

Equations bind {Σ Γ} {P Q : StoreTy Type} (f : M Γ P Σ) (g : {Σ'}, P Σ' M Γ Q Σ') : M Γ Q Σ :=
  bind f g E μ with f E μ :=
     | None := None
     | Some (Σ', μ', x, ext) with g _ x (weaken_env ext E) μ' :=
          | None := None;
          | Some (_, μ'', y, ext') := Some (_, μ'', y, ext ext').

Infix ">>=" := bind (at level 20, left associativity).

Definition transp_op {Γ Σ P} (x : Store Σ P Σ) : M Γ P Σ :=
  fun E μ Some (Σ, μ, x μ, refl_incl).

Equations ret : {Γ Σ P}, P Σ M Γ P Σ :=
  ret (Σ:=Σ) a E μ := Some (Σ, μ, a, refl_incl).

Equations getEnv : {Γ Σ}, M Γ (Env Γ) Σ :=
  getEnv (Σ:=Σ) E μ := Some (Σ, μ, E, refl_incl).

Equations usingEnv {Γ Γ' Σ P} (E : Env Γ Σ) (m : M Γ P Σ) : M Γ' P Σ :=
  usingEnv E m E' μ := m E μ.

Equations timeout : {Γ Σ P}, M Γ P Σ :=
  timeout _ _ := None.

Section StoreOps.
  Context {Σ : StoreTy} {Γ : Ctx} {t : Ty}.

  Equations storeM (v : Val t Σ) : M Γ (Val (ref t)) Σ :=
    storeM v E μ :=
      let v : Val t (t :: Σ) := weaken_val store_ext_incl v in
      let μ' := map_all (fun t' weaken_val store_ext_incl) μ in
      Some (t :: Σ, all_cons v μ', val_loc here, store_ext_incl).

  Equations derefM (l : t Σ) : M Γ (Val t) Σ :=
    derefM l := transp_op (lookup_store l).

  Equations updateM (l : t Σ) (v : Val t Σ) : M Γ (Val unit) Σ :=
    updateM l v E μ := Some (Σ, update_store l v μ, val_unit, refl_incl).
End StoreOps.

Reserved Notation "P ⊛ Q" (at level 10).

Inductive storepred_prod (P Q : StoreTy Type) : StoreTy Type :=
  | storepred_pair {Σ} : P Σ Q Σ (P Q) Σ
where "P ⊛ Q" := (storepred_prod P Q).
Arguments storepred_pair {P Q Σ}.

Class Weakenable (P : StoreTy Type) : Type :=
  weaken : {Σ Σ'}, Σ Σ' P Σ P Σ'.

#[local] Instance val_weaken {t} : Weakenable (Val t) := fun Σ Σ' incl weaken_val incl.
#[local] Instance env_weaken {Γ} : Weakenable (Env Γ) := fun Σ Σ' incl weaken_env incl.
#[local] Instance loc_weaken (t : Ty) : Weakenable (In t) := fun Σ Σ' incl pres_in incl t.

Class IsIncludedOnce (Σ Σ' : StoreTy) : Type := is_included_once : Σ Σ'.
#[local] Hint Mode IsIncludedOnce + + : typeclass_instances.

#[local] Instance IsIncludedOnce_ext {T} Σ : IsIncludedOnce Σ (T :: Σ) := store_ext_incl.

Class IsIncluded (Σ Σ' : StoreTy) : Type := is_included : Σ Σ'.
#[local] Hint Mode IsIncluded + + : typeclass_instances.

#[local] Instance IsIncluded_refl Σ : IsIncluded Σ Σ := refl_incl.
#[local] Instance IsIncluded_trans Σ Σ' Σ'' : IsIncludedOnce Σ Σ' IsIncluded Σ' Σ'' IsIncluded Σ Σ'' :=
  fun H H' trans_incl H H'.

Equations wk {Σ Σ' P} {W : Weakenable P} (p : P Σ) {incl : IsIncluded Σ Σ'} : P Σ' :=
  wk p := weaken incl p.

Equations bind_ext {Σ Γ} {P Q : StoreTy Type} (f : M Γ P Σ) (g : {Σ'} `{IsIncluded Σ Σ'}, P Σ' M Γ Q Σ') : M Γ Q Σ :=
  bind_ext f g E μ with f E μ :=
    { | None := None;
      | Some (Σ', μ', x, ext) with g _ ext x (weaken_env ext E) μ' :=
          { | None := None;
            | Some (_, μ'', y, ext') := Some (_, μ'', y, ext ext') } }.

Infix ">>='" := bind_ext (at level 20, left associativity).

Equations eval_ext (n : nat) {Γ Σ t} (e : Expr Γ t) : M Γ (Val t) Σ :=
  | 0, _ := timeout
  | S k, tt := ret val_unit
  | S k, true := ret val_true
  | S k, false := ret val_false
  | S k, ite b tr fa := eval_ext k b >>=' λ{ | _ | ext | val_true eval_ext k tr;
                                                      | _ | ext | val_false eval_ext k fa }

  | S k, var x := getEnv >>=' fun {Σ ext} E ret (lookup E x)
  | S k, abs x := getEnv >>=' fun {Σ ext} E ret (val_closure x E)
  | S k, @app Γ A B e1 e2 :=
      eval_ext k e1 >>=' λ{ | _ | ext | val_closure e' E
      eval_ext k e2 >>=' fun {Σ' ext'} v usingEnv (all_cons v (wk (P:=Env _) E)) (eval_ext k e')}
  | S k, new e := eval_ext k e >>=' fun {Σ ext} v storeM v
  | S k, deref l := eval_ext k l >>=' λ{ | _ | ext | val_loc l' derefM l' }
  | S k, assign l e := eval_ext k l >>=' λ{ | _ | ext | val_loc l'
                                eval_ext k e >>=' λ{ | _ | ext' | v updateM (wk l') (wk v) }}.

Equations strength {Σ Γ} {P Q : StoreTy Type} {w : Weakenable Q} (m : M Γ P Σ) (q : Q Σ) : M Γ (P Q) Σ :=
  strength m q E μ with m E μ {
    | None None
    | Some (Σ', μ', p, ext) Some (Σ', μ', storepred_pair p (weaken ext q), ext) }.

Infix "^" := strength.

(* Issue: improve pattern matching lambda to have implicit arguments implicit.
   Hard because Coq does not keep the implicit status of bind's g argument. *)


Equations eval (n : nat) {Γ Σ t} (e : Expr Γ t) : M Γ (Val t) Σ :=
  eval 0 _ := timeout;
  eval (S k) tt := ret val_unit;
  eval (S k) true := ret val_true;
  eval (S k) false := ret val_false;
  eval (S k) (ite b tr fa) := eval k b >>= λ{ | _ | val_true eval k tr;
                                             | _ | val_false eval k fa };

  eval (S k) (var x) := getEnv >>= fun Σ E ret (lookup E x);
  eval (S k) (abs x) := getEnv >>= fun Σ E ret (val_closure x E);
  eval (S k) (app e1 e2) :=
      eval k e1 >>= λ{ | _ | val_closure e' E
                             (eval k e2 ^ E) >>= fun Σ' '(storepred_pair v E) usingEnv (all_cons v E) (eval k e')};
  eval (S k) (new e) := eval k e >>= fun Σ v storeM v;
  eval (S k) (deref l) := eval k l >>= λ{ | _ | val_loc l' derefM l' };
  eval (S k) (assign l e) := eval k l >>= λ{ | _ | val_loc l'
                             (eval k e ^ l') >>= λ{ | _ | storepred_pair v l'' updateM l'' v }}.

Definition idu : Expr [] (unit unit) :=
  abs (var here).

Definition idapp : Expr [] unit := app idu tt.

All definitions are axiom-free (and actually not even dependent on a provable UIP instance), so everything computes.
Eval vm_compute in eval 100 idapp all_nil all_nil.

Definition neg : Expr [] (bool bool) :=
  abs (ite (var here) false true).

Definition letref {t u} (v : Expr [] t) (b : Expr [ref t] u) : Expr [] u :=
  app (abs b) (new v).
Obligation Tactic := idtac.

Equations in_app_weaken {Σ Σ' Σ'' : StoreTy} {t} (p : t (Σ ++ Σ'')) : t (Σ ++ Σ' ++ Σ'') by struct Σ :=
  in_app_weaken (Σ:=nil) p := pres_in (Σ', eq_refl) t p;
  in_app_weaken (Σ:=cons _ tys) here := here;
  in_app_weaken (Σ:=cons _ tys) (there p) := there (in_app_weaken p).

Equations pres_in_prefix {Σ Σ' Σ''} (incl : Σ' Σ'') {t} (p : t (Σ ++ Σ')) : t (Σ ++ Σ'') :=
  pres_in_prefix (Σ'', eq_refl) p := in_app_weaken p.

Equations? enters refinement mode, which can be used to solve the case of variables in proof mode.
Equations? weaken_expr {Γ Γ' t u} (e1 : Expr (Γ ++ Γ') t) : Expr (Γ ++ u :: Γ') t :=
  weaken_expr tt := tt;
  weaken_expr true := true;
  weaken_expr false := false;
  weaken_expr (ite b tr fa) := ite (weaken_expr b) (weaken_expr tr) (weaken_expr fa);
  weaken_expr (var (t:=ty) x) := var _;
  weaken_expr (abs (t:=t) x) := abs (weaken_expr (Γ := t :: Γ) x);
  weaken_expr (app e1 e2) := app (weaken_expr e1) (weaken_expr e2);
  weaken_expr (new e) := new (weaken_expr e);
  weaken_expr (deref l) := deref (weaken_expr l);
  weaken_expr (assign l e) := assign (weaken_expr l) (weaken_expr e).
Proof.
  clear weaken_expr. apply (pres_in_prefix (Σ' := Γ') ([u], eq_refl) x).
Defined.

Definition seq {Γ u} (e1 : Expr Γ unit) (e2 : Expr Γ u) : Expr Γ u :=
  app (abs (weaken_expr (Γ := []) e2)) e1.

(* let x = ref true in
   x := false; !x *)


Definition letupdate : Expr [] bool :=
  letref true (seq (assign (var here) false) (deref (var here))).

Eval vm_compute in eval 100 letupdate all_nil all_nil.

   = Some ([bool], all_cons val_false all_nil, val_false, [bool], eq_refl)
   : option (∃ (Σ' : StoreTy) (_ : Store Σ') (_ : Val bool Σ'), [] ⊑ Σ')

This page has been generated by coqdoc